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Abstract

Each period, a principal must assign one of two agents to a new task. Each
agent privately learns whether he is qualified for the task. An agent wishes
to be chosen independently of qualification, and chooses whether to apply for
the task. The principal wishes to appoint the most qualified agent and chooses
which agent to assign as a function of the public history of profits. We fully
characterize when the principal’s first-best payoff is attainable in equilibrium,
and identify a simple strategy profile achieving this first best whenever feasible.
Additionally, we provide a partial characterization of the case with many agents
and discuss how our analysis extends to other variations of the game.
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1 Introduction

How should a principal dynamically assign tasks to the agents who are most qualified

to complete them, when agents hope to be selected regardless of their qualification;

and the principal cannot observe qualification and cannot use contingent monetary

transfers?

This question is pertinent to many economically relevant situations. Consider a

manager who must decide which employee to assign to a new project or client, or

a politician in office who needs to designate a staffer in charge of new legislation,

or an organization that needs someone to direct a new initiative. Oftentimes, such

employees receive a monthly salary or fixed payment per task. Interested employees

may be required to communicate their availability, provide some evidence of serious

intention, or pitch their vision for the project at hand. Alternatively, one can think

of situations where the agents propose ‘ideas’ to a decision-maker. For instance,

think tanks and researchers submit proposals for a grant; engineers suggest directions

for new versions of a product. The problem can also be interpreted as a stylized

representation of a median voter choosing between office-driven politicians in each

election.

To address the above question, we analyze an infinitely repeated game between

a principal and two agents. The key features of the game are the following. Every

period a new task arrives and each agent privately learns whether he is qualified for

it, where the probability of being qualified (denoted by θ) is commonly known.1 The

agents then simultaneously decide whether to apply for the task and the principal

can select at most one applicant. Each agent cares only about being selected. The

principal, however, cares about the profit from a completed task, which is either high

or low (an unassigned task generates no profit), such that a high profit is more likely

for a qualified agent. It follows that the principal’s first-best outcome is to pick the

most qualified agent in every period. The question is, under what conditions can the

first-best be achieved in a perfect public equilibrium (PPE), and with what strategies?

Our first main result answers this question by characterizing the full set of param-

eter values (the probability of being qualified, the probabilities of a high profit for a

qualified and unqualified agent, and the common discount factor) for which the first-

1We focus here on the case of symmetric abilities, and refer the reader to our working paper de
Clippel et al. (2019) for a more general analysis with heterogenous abilities.
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best is attainable in PPE. In addition, we identify a simple strategy profile, dubbed

the Markovian Last Resort (MLR), that achieves the first best whenever it is feasible;

that is, over the entire set of parameter values for which first-best is attainable.

The MLR strategy profile can be described as follows. At each history, one agent

is designated as the agent of last resort, and the remaining agent is designated as

discerning. The agent of last resort proposes himself regardless of whether he is

qualified, while the discerning agent proposes himself if and only if he is qualified. The

principal selects the agent of last resort if he is the only one available, and otherwise

picks the discerning agent. The first agent of last resort is chosen arbitrarily, and he

remains in that role so long as all of the principal’s past profits were high. Otherwise,

the agent of last resort is the most recent agent who generated a low profit. This

profile has the following appealing features. First, it requires players to keep track

of very little information: they need only know who was the last agent to generate

low profit. Second, it does not require the agents to punish the principal to ensure

she follows the strategy: MLR remains an equilibrium even when the principal’s

discount factor is zero. Furthermore, the MLR strategy profile is also an ex post PPE

with respect to agents’ qualifications: taking expectations over the future path of

play, each agent’s proposal decision remains optimal regardless of his belief about the

other agent’s privately observed qualification.

In Section 3, we turn to analyze the challenging case of more than two agents. We

generalize the MLR strategy profile in a natural way, by having n−1 discerning agents

and the principal choosing at random from among discerning proposers whenever

possible. Clearly, the MLR profile delivers the first-best outcome for the principal,

and the only question remaining is when it constitutes an equilibrium. We first note

that it is impossible to attain the principal’s first-best in PPE (or even in Nash

equilibrium) if agents’ abilities are below 1− n−1

√
1
n
. We then characterize the set of

parameter values for which the MLR profile constitutes a PPE. We show that when

ability is strictly above 1− n−1

√
1
n
, the MLR is an equilibrium when agents are patient

enough and realized profits are sufficiently informative of qualification. In this sense,

we obtain a characterization of the widest range of abilities for which first-best is

achievable, and show that it is achievable by the MLR.2

2It remains an open question whether the set of parameters where MLR is a PPE corresponds to
the widest set of all parameters for which first-best is achievable. This is in contrast to the two-agent
case, in which this is indeed the case. The difficulty stems from the fact that, unlike in the two-agent
case, the shape of the set of PPE payoffs is unknown. In particular, it is unclear whether it is feasible
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This leaves open the question of whether another strategy profile attains the prin-

cipal’s first-best in PPE for a wider range of parameters than the MLR. To at least

partially address this question, we compare the performance of the MLR with an in-

tuitive class of strategy profiles, which we call hierarchical. In a hierarchical strategy

profile, agents are assigned priorities, the lowest-priority agent serves as last resort

while all other agents are discerning, the principal picks the proposing agent with

the highest priority, and a discerning agent moves down the ranking if he generates

a low profit, with the ranking of agents with a higher priority than him unaffected.

The MLR profile can be thought of as a ‘flat’ hierarchy with only two tiers: the last

resort is at the bottom and everyone else has the same priority. Would more tiers

help attain the principal’s first-best in PPE for a wider range of parameter values?

We show that (1) no hierarchical strategy profile ‘dominates’ MLR in the sense of

attaining the first-best in PPE whenever MLR does, and (2) MLR dominates any

hierarchical profile that sends a ‘failing’ agent to the bottom of the ranking.

Our paper provides a thorough analysis of a common strategic dilemma: how

should one select the ‘right’ expert (idea, candidate) when the supply side mainly

cares about being chosen, and possesses private information pertinent for identifying

the right choice? While we naturally abstract from many details present in real-life

situations, many of these often share a few key features with our stylized model: the

decision-maker repeatedly faces the same group of individuals who want to be selected,

she cannot credibly commit to a decision rule, and cannot make contingent transfers.

Our analysis identifies a simple and intuitive strategy profile that attains the decision-

maker’s first-best payoff whenever this is feasible. Its structure is independent of the

parameters, and is reminiscent of the tendency to avoid–whenever possible–choosing

the most recent individual to generate a disappointing result.

The remainder of the paper is organized as follows. The next section introduces

the model. Section 2 presents our main results for the two agent case, and Section

3 analyzes the case of more than two agents. The related literature is discussed in

Section 4 and Section 5 discusses various extensions.

to bring more than one agent to the lowest PPE payoff. Indeed, we are not aware of any work that
fully characterizes the set of PPE payoffs in a setting with incomplete information, no transfers and
more than two players.
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2 A Model

There is one principal and two agents, 1 and 2. Each period t = 0, 1, 2, ... there is

a new task (or project) available, and the principal can choose at most one agent

to carry it out. The principal’s profit from a period t project is yt ∈ {0, 1}, and is

determined stochastically depending on whether or not the agent assigned to carry

it out is qualified to do so. An unassigned project generates zero profits. A qualified

agent has probability α ∈ (0, 1) of generating high profit for the principal, while a

non-qualified agent generates high profit with a strictly smaller probability β ∈ [0, α).

Given our normalization for profits, β ≥ 0 implies the principal prefers to hire a non-

qualified agent over hiring no one. In each period t the probability that each agent i

is qualified for the current project is constant and equal to θ. Thus, the parameter θ

captures the common ability of the agents.3 Each agent privately observes whether he

is qualified for the specific project at hand, but the agents’ ability level θ is commonly

known.

In every period, the stage game unfolds as follows. Each agent privately observes

whether he is qualified for the current project, and decides whether to submit a

proposal to the principal. The principal then decides which agent, if any, to select

among the proposers.

Agent i gets a positive payoff in period t if the principal picks him in that period.

We normalize this payoff to one (having a different payoff for each agent has no effect

on our analysis). Agent i’s objective is then to maximize the expectation of the

discounted sum
∑∞

t=0 δ
t1{xt = i}, where δ is each agent’s discount factor, 1{·} is the

indicator function and xt ∈ {1, 2}∪ {∅} is the identity of the agent that the principal

picks in period t, if any. That is, each agent simply wants to be selected regardless

of the end profit from the project.4

The principal’s profit in a given period is zero if she does not choose any agent, and

is otherwise equal to the realized profit from the project. Her objective is to maximize

the expectation of the discounted sum
∑∞

t=0 δ
t
0yt, where δ0 is the principal’s discount

3We later discuss how the results extend to the case of individual-specific abilities.
4The assumption that agents simply want to be selected regardless of the end profit from the

project captures situations where agents want to accumulate experience, build a resume, or obtain
certain resources associated with carrying out a project, and where the principal’s payoff from a
project cannot be verified by an outside party. Our analysis would not change (but it would be more
tedious) if each agent also received some fixed bonus when profits are high. We refer the reader to
our working paper for a treatment of this case.
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factor and yt ∈ {0, 1} is her period-t profit.

The agents’ proposal decisions, the agent chosen by the principal (if any), and the

realized profit are all publicly observed.5 We define a public history at any period t as

the sequence ht = ((xt′ , yt′ , St′))
t−1
t′=0 where Sτ ⊆ {1, 2} ∪ {∅} is the set of agents who

made a proposal in each period τ < t and, as defined above, xτ and yτ denote the

chosen agent and the profit he generated. A public strategy for agent i determines,

for each period t, the probability with which he makes a proposal to the principal as

a function of his current qualification and the public history of the game. A public

strategy for the principal determines, for each period t, a lottery over which agent to

select (if any) from among the set of agents who propose, given that set of proposers

and the public history of the game. We apply the notion of perfect public equilibrium

(PPE), that is, sequential equilibria where players use public strategies.

Discussion. There are three key features in our model. First, the principal is better

off selecting some agent than not selecting any, which fits situations where the loss

from not performing a task outweighs the loss from not doing it well. This assumption

pins down an important property of the first best: at every history, one agent must

propose himself if and only if he is qualified, while the other agent must propose

regardless of his qualifications. As is evident from the proof of our main result, this

implication facilitates the derivation of the necessary conditions for attaining the first-

best. In our concluding remarks we briefly discuss the case in which an unqualified

agent leads to an expected loss.

Second, the principal cannot sign complete contracts with the agents that specify

transfers as a function of profits. This feature captures situations where either the

principal’s payoff cannot be verified by an outside party (e.g., it may include intangible

elements such as perceived reputation), or because of institutional constraints that

preclude such contracts (as in most public organizations where subordinates, who

receive a constant wage, may propose themselves to an executive decision maker).

Third, the principal cannot pick an agent who has not submitted a proposal. This

captures situations where either institutional norms or explicit rules require an agent

to give tangible evidence for his ability to take on the project and to explicitly lay out

his plans. Allowing agents’ messages to be cheap talk (in the sense that a principal

can still pick an agent who declares himself unqualified or unavailable) significantly

5As we will show, our results would not change if players could only observe the identity of the
last agent who generated a low profit for the principal.
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complicates the derivation of necessary and sufficient conditions for attaining the

first-best in PPE. It therefore remains an open question whether there exists a sin-

gle strategy profile that implements the first-best in PPE for the widest range of

parameters.6

3 Main result

A strategy profile achieves the principal’s first-best if a qualified agent is chosen in

every period where at least one agent is qualified, and some agent is chosen in all

other periods.7 We say that an agent is discerning when he applies if, and only if, he

is qualified. Clearly, a strategy profile implements the first-best in PPE only if every

period at least one agent is discerning.

Our main result consists of two parts. First, it provides a complete characteriza-

tion of the parameter values for which the principal can attain the first-best in any

PPE. Second, it shows that a simple strategy profile, which we next introduce, attains

the first-best PPE payoff over the entire region of parameters for which a first-best

PPE exists.

Definition 1 (The Markovian Last Resort (MLR) Strategy Profile). At each history,

one agent is designated as the agent of last resort, and the remaining agent is desig-

nated as discerning. The agent of last resort proposes himself independently of his

qualification, while the discerning agent proposes himself if and only if he is quali-

fied. The principal selects the agent of last resort if he is the only one available, and

otherwise picks the discerning agent. The identity of the initial agent of last resort

is chosen arbitrarily, and he remains in that role so long as all the principal’s past

profits were high. Otherwise, the agent of last resort is the most recent agent who

generated low profit for the principal.

Clearly, the principal achieves her first best if she and the agents follow the MLR

strategy profile. She is sure to select an agent each period, and will select a qualified

6While the MLR strategy profile described in the Introduction still attains the first-best in PPE,
we do not know if it does so for the largest set of parameters. The source of complication is that
under cheap-talk messages the first-best allocation (who should be assigned the task at each history)
is not pinned down. Consequently, there are many continuation payoffs that need to be considered
in deriving the necessary conditions for attaining the first-best in PPE.

7Of course, the principal would prefer picking only high-profit proposals when possible, but no
one knows at the selection stage whether high profit will be realized.
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agent whenever one exists. The question then is, under what conditions is this profile

a PPE?

Proposition 1. (a) A PPE that attains the principal’s first-best exists if and only if

δ ≥ 1

β + 2θ(α− β)
. (1)

(b) The MLR strategy profile is a PPE if and only if (1) holds. Hence, there is a

strategy profile attaining first-best in PPE if and only if the MLR profile is a PPE.

This result implies that the first-best is attainable in equilibrium when agents are

patient enough if and only if the agents are sufficiently able, in the sense that:

2θ >
1− β
α− β

(2)

where the inverse of the right-hand side, α−β
1−β = 1− 1−α

1−β < 1, measures how informative

low profits are of qualification. Since the right-hand side is greater than one, this

inequality holds only if θ > 1
2
. Thus, the first-best is attainable in PPE only if the

agents are more likely to be qualified than not.

The key incentive constraint, which generates condition (1), is the one facing an

unqualified discerning agent. To express this constraint, let V D
1 and V LR

1 represent

agent 1’s average discounted payoff (prior to learning his qualification status) under

the MLR strategy profile when he is discerning and when he is last-resort, respectively.

These are defined as follows:

V D
1 = θ

(
(1− δ) · 1 + αδV D

1 + (1− α)δV LR
1

)
+ (1− θ)δV D

1 ,

V LR
1 = (1− θ)

(
(1− δ) · 1 + δV LR

1

)
+ θ

(
αδV LR

1 + (1− α)δV D
1

)
.

To see why, consider first the continuation payoff when agent 1 is discerning.

With probability θ he is qualified, and hence will propose himself and be chosen,

receiving an immediate payoff of 1. If he succeeds–an event with probability α–he will

remain discerning in the next period. Otherwise, he will become last resort. With

probability 1−θ, the discerning agent is not qualified and will not propose, leading to

the selection of the last resort agent. The continuation payoff of the last resort agent

is derived in a similar way. The only difference is that the last resort agent is chosen
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only when the discerning agent is unqualified (which happens with probability 1−θ),
and he switches roles when the discerning agent is picked and fails (which happens

with probability θ(1− α)).

The IC constraint for an unqualified discerning agent not to propose is given by:

δV D
1 ≥ 1− δ + βδV D

1 + (1− β)δV LR
1 ,

which can be rewritten as

V D
1 − V LR

1 ≥ 1− δ
δ(1− β)

. (3)

Solving explicitly for V D
1 and V LR

1 yields

V D
1 − V LR

1 =
(1− δ)(2θ − 1)

1− δ + 2θδ(1− α)
, (4)

Plugging this expression in the L.H.S. of (3) yields condition (1).

The intuition for why the MLR attains the first-best for the widest range of

parameters is more subtle. First, note that attaining the first-best restricts the type

of punishments that can be levied on agents. In particular, at no history can there

be an agent who is selected with probability zero regardless of the agents’ choices

in that period. The reason is that during those periods that agent may be the only

one qualified and would therefore need to be chosen to attain the first-best. Second,

note that in any period, exactly one agent is discerning and one is last-resort. Since

the last resort agent proposes himself regardless of his qualifications, he cannot be

incentivized. As evident from (4), the last-resort agent is worse off than the discerning

agent if θ > 1
2
, which must be true for (2) to hold. Hence, the harshest possible

punishment is to keep an agent as last-resort for as long as possible, conditional on

motivating the other agent. The best possible reward is to make an agent discerning

for as long as possible, conditional on motivating him. MLR does both.

The MLR profile has several desirable properties. First, it is robust to heteroge-

neous abilities: Proposition 1 extends to the case in which agent i’s probability of

being qualified is θi with θ1 6= θ2. In this case, the term 2θ in (1) is simply replaced

with the sum of abilities θ1 + θ2 (the proof is analogous to that of Proposition 1, only

slightly more tedious; for details, see our working paper, de Clippel et al. (2019)).8

8Allowing for heterogeneity in success probability, MLR is a PPE as soon as i’s discount factor
is larger or equal to 1

βi+2θ(ᾱ−βi)
, where ᾱ is the average of α1 and α2. Notice, however, that the
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Thus, the first best becomes harder to attain in PPE (in the sense of having a smaller

range of parameter values for which the first-best is attainable) the lower are the

agents’ abilities.

This last observation implies that the MLR strategy profile also achieves the

principal’s first best in a “belief-free” way when there is unobservable heterogeneity

in the agents’ ability. Specifically, suppose each agent privately draws his ability

from some distribution over the interval [θ, 1), and the principal wants to guarantee

her first-best outcome for all realizations of (θ1, θ2). To accommodate this form of

robustness, define a belief-free equilibrium to be a strategy profile that constitutes a

PPE for any realized vector of abilities. It follows that the first-best is attainable in

a belief-free equilibrium if and only if (1) holds for θ = θ. Furthermore, the MLR

profile achieves the first-best in a belief-free equilibrium whenever this is feasible.

Second, the principal and the agents need not observe, nor remember, much in-

formation about past behavior. At any history, the principal’s selection decision is

based only on the identity of the current last resort agent–which changes if and only

if a discerning agent fails–and the set of agents who propose. In particular, past

proposals play no direct role, and high profit realizations do not trigger changes in

the identity of the last resort agent.

Third, the principal’s selection rule is optimal for her (thereby providing endoge-

nous commitment) without relying on the agents to punish her if she deviates from it.

While efficient equilibria in the literature often rely on any deviator to be punished

by others, in our environment we would find it unnatural if the principal were to

follow her part of an equilibrium that achieves her first best only because she fears

the agents will punish her otherwise. Indeed, the MLR strategy profile remains a

PPE independently of the principal’s discount factor.

Relatedly, in our model there is no institutional device that enables the principal

to credibly commit to a selection policy. However, since we focus on attaining the

principal’s first-best, allowing the principal to commit would not enlarge the set of

parameters for which the first-best is attainable. What restricts this set of parameters

are the agents ’ incentive constraints.

principal’s first-best is unattainable when these probabilities are common knowledge. Indeed, it
requires choosing the high probability agent whenever he is qualified, which is possible only if he
is discerning at all rounds. But this cannot be done as it eliminates the possibility of punishment.
Whether the MLR achieves a second-best for the widest range of parameters remains an open
question.
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Fourth, the MLR strategy profile addresses questions of equilibrium robustness.

From the proof of Proposition 1, it is clear that the MLR strategy profile is in fact

an ex post PPE whenever (1) holds: taking expectations over the future path of play,

each agent’s proposal decision remains optimal irrespective of his belief about the

other agent’s current private information (i.e., whether the other agent is qualified or

not).9 In an ex post equilibrium, stringent (simultaneous and private) communica-

tion protocols are not necessary. This robustness, which is particularly relevant for

environments where it is difficult to restrict how agents share information, comes for

free in our environment. If we focus on ex post PPE, then MLR also achieves the

first-best for the widest range of parameters when the principal can choose an agent

even if he did not propose himself. Details can be found in de Clippel et al. (2019).

Finally, our results imply that even if the principal could incur a cost to figure out

which agent is better qualified prior to making the selection, under condition (1) the

repeated nature of the interactions with the agents allows her to reach the first-best

without having to resort to this costly verification.

4 Many agents

In the previous section we established that when the principal faces two agents, there

is a simple and intuitive strategy profile–the MLR–that attains the principal’s first-

best in PPE whenever the first-best is attainable in PPE.

In this section, we examine how some of our results generalize when there is a set

A = {1, 2, . . . , n} of n ≥ 2 agents, each with ability θ.10 Our first observation identifies

9Such notions of equilibrium, imposing ex post incentive compatibility in each period taking
expectations over the future path of play, were introduced separately by Athey and Miller (2007)
and Bergemann and Valimaki (2010). The latter use the term “periodic ex post.” Miller (2012)
considers ex post PPE in a model of collusion with adverse selection. In addition, ex post equilibria
are robust to the introduction of payoff-irrelevant signals and high-order beliefs; see Bergemann and
Morris (2005).

10We refer the reader to our working paper for extensions with heterogenous abilities ~θ, where θi is
the ability of agent i. Proposition 2 below extends verbatim. Proposition 3, which characterizes the
set of parameters for which the MLR (generalized to n agents) forms a PPE, extends after taking
care of the following complexities. An agent i’s continuation payoff from being discerning depends
both on ~θ and the identity of the agent currently removed from the discerning pool, and similarly
the continuation payoff from being last resort depends on all of ~θ. The IC’s are thus potentially
asymmetric, but they can be summarized in matrix form; and we use linear algebra to characterize
when the MLR strategy profile forms a PPE. We also provide the inequality on parameters that
characterizes when MLR forms a belief-free PPE, that is, a PPE whatever the agents’ abilities are
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a necessary condition for the existence of any PPE that attains the principal’s first-

best. To present this result, define the threshold ability level θ∗ = 1− n−1

√
1
n
, which

decreases in n (starting from 1/2 for n = 2) and tends to 0 as n tends to infinity.

Proposition 2. If θ < θ∗, then there is no PPE (and even no Nash equilibrium) that

attains the principal’s first-best.

Proof. First, observe that the underlying principle from our earlier analysis generalizes

to n ≥ 2 agents. To achieve the principal’s first best in PPE, at each history h,

there must be n − 1 discerning agents, each of whom proposes himself if and only

if he is qualified; one agent i(h) of last resort who proposes himself irrespective of

his qualifications; and the principal must pick some i 6= i(h) whenever possible,

using i(h) only as a last resort. Notice that i(h) is picked with probability (1 −
θ)n−1, corresponding to no discerning agent being qualified. If a discerning agent

were to deviate and propose himself regardless of qualification, he could guarantee a

probability at least (1−θ)n−2 of getting picked, which exceeds (1−θ)n−1. By proposing

oneself in all periods, each agent can thus secure a discounted probability of being

chosen which is at least (1− θ)n−1/(1− δ). The principal will pick exactly one agent

in each round in her first-best PPE, so the aggregate discounted probability of being

picked is 1/(1− δ). The equilibrium could not exist if 1/(1− δ) were strictly smaller

than the sum of aggregate discounted probabilities that each agent can guarantee.

The cutoff θ∗ above is the smallest θ satisfying this constraint. �

4.1 Characterizing when MLR is a PPE

We now generalize the MLR strategy profile by treating all n−1 discerning agents in

a symmetric manner, with the principal randomizing uniformly when selecting among

discerning agents who have proposed. At the very beginning of a period–before agents

learn their qualifications–we have:

• the ex ante probability that the last resort agent is chosen is ρ = (1− θ)n−1;

• the ex ante probability of being selected as a discerning agent is 1−ρ
n−1

,

• the premium (in terms of the increased ex ante probability of selection) from

being a discerning agent, instead of the agent of last resort, is π = 1−ρ
n−1
− ρ =

1−nρ
n−1

.

in the set [θ, 1]n.
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We may now characterize when the MLR strategy profile is a PPE.

Proposition 3. The MLR strategy profile is a PPE if, and only if,

δ ≥ 1

α + (α− β)π
. (5)

Proof. Assume that players follow the MLR strategy profile. Clearly, neither the

last-resort agent, nor the principal, have profitable unilateral deviations. We need to

check that a discerning agent proposes himself if, and only if, he is qualified.

Let σ be the probability that a discerning agent is picked conditional on him

proposing himself, that is, σ = 1−ρ
(n−1)θ

. A discerning agent i who is unqualified refrains

from proposing himself if

δV D
i ≥ σ︸︷︷︸

i selected

(
(1− δ) + βδV D

i︸ ︷︷ ︸
high profit

+ (1− β)δV LR
i︸ ︷︷ ︸

low profit, i becomes
last resort agent

)
+ (1− σ)δV D

i︸ ︷︷ ︸
i not selected

, (6)

where V D
i and V LR

i , represent i’s average discounted payoff (before learning his quali-

fication) under the MLR strategy profile when discerning and last resort, respectively.

Similarly, a discerning agent i who is qualified proposes himself if

σ︸︷︷︸
i selected

(
(1− δ) + αδV D

i︸ ︷︷ ︸
high profit

+ (1− α)δV LR
i︸ ︷︷ ︸

low profit, i becomes
last resort agent

)
+ (1− σ)δV D

i︸ ︷︷ ︸
i not selected

≥ δV D
i . (7)

Let us first examine incentive condition (6). We subtract δV LR
i from both sides of

the inequality (6), and let ∆i represent V D
i − V LR

i . Then incentive condition (6) is

equivalent to

δ∆i ≥ σ(1− δ) + σβδ∆i + (1− σ)δ∆i,

which can be rearranged to obtain the inequality

∆i ≥
(1− δ)

(1− β)δ
. (8)

Similar computations show that inequality (7) is equivalent to

∆i ≤
(1− δ)

(1− α)δ
. (9)
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The payoff difference ∆i from being a discerning agent instead of the last resort agent

can be computed through the recursive equations defining V D
i and V LR

i :

V D
i =

qualified,
selected︷︸︸︷
θσ

(
(1− δ) + αδV D

i + (1− α)δV LR
i

)
+

unqualified, or
not selected︷ ︸︸ ︷
(1− θσ) δV D

i ,

V LR
i = ρ︸︷︷︸

selected

(
(1− δ) + δV LR

i

)
+ (1− ρ)︸ ︷︷ ︸

not selected

(
αδV LR

i + (1− α)δV D
i︸ ︷︷ ︸

low profit, switch
to discerning

)
.

(10)

Replacing V D
i by V LR

i + ∆i, notice that the expression for V LR
i can be rewritten as

V LR
i = ρ(1− δ) + δV LR

i + (1− ρ)(1− α)δ∆i.

Subtracting this new expression for V LR
i from that for V D

i in (10), we get:

∆i = π(1− δ) + θσαδ∆i + (1− θσ)δ∆i − (1− ρ)(1− α)δ∆i,

or

∆i =
π(1− δ)

1− δ + δ(1− α)(1 + π)
.

Using this expression for ∆i, we conclude that the incentive condition (9) (propos-

ing when qualified) is always satisfied, and that the incentive condition (8) (not

proposing when unqualified) is satisfied if, and only if, (5) holds, as claimed.

From Proposition 3, we see that the MLR strategy profile forms a PPE when

agents are patient enough if, and only if, α + (α− β)π > 1, or

π >
1− α
α− β

, (11)

For (11) to hold, low profits need to be sufficiently informative of the agent’s lack

of qualification. This follows from observing that the inverse of the right-hand side,
α−β
1−α = 1−β

1−α − 1, increases with the likelihood ratio 1−β
1−α , which measures the extent to

which it is more likely that low profits originated from a non-qualified agent. Thus,

when π is strictly positive, the principal’s first best is achievable in equilibrium,

provided that agents are patient enough and profits are sufficiently informative of

qualification. Moreover, π is strictly positive if and only if θ > θ∗ (as can be seen

using π = 1−nρ
n−1

and ρ = (1− θ)n−1). Combined with Proposition 2, we conclude that
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we have identified the widest range of abilities (θ) for which the principal can achieve

her first best in a PPE. Contrary to the two-agent case, we have not been able to

identify the widest range of all parameters (α, β, δ, and θ) for which this is feasible.

The next subsection elaborates on this.

4.2 Hierarchies

A natural question is whether a strategy profile other than MLR achieves the princi-

pal’s first best in PPE for a wider range of parameters. A complete characterization

of the necessary and sufficient conditions for attaining the first-best in PPE is a chal-

lenging task with three or more agents. It is not immediately clear how the proof

technique used for the n = 2 case extends to n ≥ 3. First, solving the minimiza-

tion problem to find the lowest discounted probability with which an agent is picked

in equilibrium is very challenging to solve. Second, and more importantly, it is not

clear that finding this minimum would allow to characterize the range of parameters

for which the principal’s first best is achievable. This is because we do not know the

shape of the convex set of equilibrium payoffs (which must be an interval for n = 2).11

We thus propose to evaluate the performance of MLR against an intuitive class of

alternative strategy profiles. A strategy profile is hierarchical if following each history

h, the principal uses a ranking (i.e., strict ordering) Rh of all the agents such that:

(i) In the period following history h, the principal picks the proposing agent ranked

highest according to Rh

(ii) If high profit is generated in the period following h, or if the lowest-ranked agent

under Rh was picked, then the ranking in the next period remains Rh.

(iii) If low profit is generated, then a deterministic rule is applied to generate the

next period’s ranking, as a function of the current rank k of the failing agent.

Under this rule, agents ranked above agent k keep their positions;

(iv) The top (n−1)-ranked agents under Rh propose if and only if they are qualified

(i.e., are discerning), while the bottom-ranked agent always proposes himself.

11We are not aware of applications of APS to derive simple closed-form solutions in problems with
more than two players and no transfers.
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The following are some examples of rules that determine how the agents’ rankings

change when a discerning agent generates low profit: (a) the “failing” agent drops to

the bottom of the ranking, and every agent ranked below i moves up one rank, (b) the

“failing” agent switches ranks with the bottom-ranked agent, and (c) the “failing”

agent switches ranks with the agent right below him. There are many possibilities,

but none clearly dominates MLR.

Proposition 4. For two strategy profiles s and s′ achieving the principal’s first-best,

say s dominates s′ if s forms a PPE for all values (β, α, δ, θ) at which s′ does. Then:

(a) No hierarchical strategy profile dominates MLR.

(b) MLR does not dominate all hierarchical strategy profiles, but it does dominate

any such profile that sends a failing agent to the bottom of the ranking.

To get some rough intuition for (b), suppose there are three agents, with 1 ranked

first, 2 ranked second and 3 the last resort. The tough constraint is to get agent 2 to

report honestly, since his continuation value is lower than 1’s, meaning that 1’s IC is

slack when 2’s binds. If we treat 1 and 2 equally, we can introduce slack into 2’s IC,

and enlarge the set of parameter values for which first-best is achievable.

It remains an open question whether there exists some strategy profile, which is

not MLR and lies outside the class of hierarchical strategy profiles, that achieves the

principal’s first-best in PPE for the widest range of parameters. If no such profile

exists, then Proposition 4 suggests a more complex picture, where different strategy

profiles have to be used for different values of parameters to maximize the range of

parameters where first best is achievable in PPE. In the proof (in the Appendix), we

show that MLR works for some parameter values, while switching a failing agent with

the next in the hierarchy works for others.

5 Related literature

Our paper relates to several strands of literature. In our problem, the principal uses a

form of dynamic favoritism, the promise (threat) of future (dis)advantage, as a means

of aligning incentives. Strategic use of favoritism also arises in static mechanism-

design environments without monetary transfers. For example, Ben-Porath, Dekel

and Lipman (2014) characterize the optimal mechanism for allocating a task to one of
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several agents, when each agent’s profitability is private information, and the principal

can pay a cost to learn a single agent’s type before deciding who to select. They show

that an optimal mechanism is characterized by a favored agent and a threshold value,

such that when all other agents report values below the threshold, the favored agent

gets the task, while in all other cases it is given to the agent with the highest reported

value if and only if his report is verified. Our MLR strategy is similar in spirit to this

mechanism in the sense that the discerning agent gets the task whenever he proposed

himself, and in all other cases, the last resort is chosen.

Our model is also related to a small literature that analyzes infinitely repeated

elections in which a median voter needs to elect one of multiple candidates with

private types. Two notable examples are Banks and Sundaram (1993, 1998) where

private types are persistent and chosen candidates take a hidden action. They restrict

attention to a particular class of equilibria where the median voter retains the current

incumbent as long as his payoff is above some threshold, and lower cost incumbents

take higher actions. According to a recent survey by Duggan and Martinelli (2017),

this literature has remained small due to the “difficult theoretical issues related to

updating of voter beliefs,” and has examined various restrictions to simplify this

difficulty. We circumvent this difficulty since the MLR strategy profile achieves the

first-best in a belief-free equilibrium for the widest range of parameters.

Lipnowski and Ramos (2016) and Li, Matouschek and Powell (2017) study an

infinitely repeated game in which a principal decides whether to entrust a task to a

single privately informed agent. The presence of multiple competing agents is crucial

to our analysis: If there were only one agent, the principal could achieve no better

than having him propose regardless of qualification.

Our paper relates to a small literature on relational contracts with multiple agents.

Board (2011) and Andrews and Barron (2016) study how a principal (firm) chooses

each period among multiple contractors or suppliers whose characteristics are per-

fectly observed by the principal, but whose post-selection action is subject to moral

hazard. In contrast to these papers, our framework has no transfers, our MLR strat-

egy profile attains the first-best whenever the first-best is attainable and it does not

rely on threats by agents to punish the principal.

Board (2011) shows that under commitment, an optimal contract favors agents

with whom the principal has traded in the past, and when the principal is sufficiently

patient, such a contract is self-enforcing. Andrews and Barron (2016) show that under
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certain conditions, the first best can be attained by a “Favored Producer Allocation”

(FPA) allocation rule that picks each period the agent who generated positive output

most recently among those with the highest type for that period (if no such agent

exists, one of the high types is randomly chosen). Although our environment is very

different, the MLR shares the feature of favoring an agent: if the agent chosen most

recently has generated high output, he is chosen again. However, the MLR rule

differs from FPA in that the latter tilts future allocations to reward success, while

the former tilts future allocations to punish failure. To understand why the two

mechanisms differ, suppose there are two agents with 1 being favored. In our case,

we do not need to provide agent 2 any incentives, so that agent 1 remains favored

even if agent 2 succeeds. In the model of Andrews and Baron (2016) agent 2 must

be incentivized not to hold-up the principal, which requires making him the favored

agent if he succeeds.

By focusing on the first-best, our analysis relates to Athey and Bagwell (2001),

where two colluding, ex-ante symmetric firms play a repeated Bertrand game and

are privately informed about their respective costs. In a binary-types model, they

show that the firms can use future “market-share favors” in order to achieve first best

payoffs. Besides differences in the game structure, a key feature distinguishing our

analysis is our derivation of a condition (on all parameters) that is not only sufficient

for first best, but also necessary. This condition allows us to identify an intuitive

strategy profile that attains first best whenever it is attainable. In addition, our

characterization of first best allows for heterogeneity across agents.

6 Concluding Remarks

This paper studies a simple, repeated interaction between a principal and a group

of agents, which naturally arises in many contexts: deciding which worker is best for

a new project, which team member’s idea has the most potential, which candidate

to hire. In many of these examples the candidates or applicants simply want to

be selected, while the decision-maker (“the principal”) wants to select an individual

satisfying some requirements (e.g., if he’s qualified for the task). Oftentimes, the

principal in these scenarios cannot make contingent transfers, and has no credible

means of committing to a decision rule.

Intuition suggests that the principal should contemplate selecting someone else
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after an agent generates a disappointing outcome, if she hopes to incentivize at least

some of the agents to be discerning. It is not obvious however, whether the principal

should act after a single failure, whether her decision rule should depend on the

number of past successes or failures, or whether the best outcome is attained by a rule

which is sensitive to the parameters of the environment. It is therefore interesting to

learn that whenever the principal’s first-best outcome is achievable in equilibrium, it

is achievable by a simple Markov strategy, which is independent of the environment’s

parameters.

There are numerous interesting ways to extend our model. Some are easy to

accommodate, while others are more challenging. One natural extension is to the

case that an unqualified agent generates losses in expectations (by letting low profits

be negative). In this case, the principal attains his first-best payoff if in every period

he chooses a qualified agent whenever one is available, and chooses no one otherwise.

However, it can be shown that there is no PPE that achieves this (for details see de

Clippel et al. (2019)).

A second natural extension is when the principal’s profit follows a more general

distribution on some some interval [0, y], conditional on an agent’s qualification, such

that the expected profit from an unqualified agent is positive, and strictly lower

than the expected profit from a qualified agent. The MLR strategy profile can be

adapted to this setting by endogenizing α and β: A discerning agent becomes the new

agent of last resort when generating a profit in some punishment set X ⊂ [0, y]. We

can then select X so that first-best is achievable for the largest range of discount

factors. For instance, under the monotone likelihood ratio property, the punishment

set comprises all profit levels below some threshold y∗. However, it remains an open

question whether MLR achieves the first-best for the widest range of parameters.

A more challenging extension is to allow for multiple, or possibly a continuum

of, qualifications levels such that a higher-qualified agent is more likely to generate

high profits. Addressing this extension would require us to consider a framework

with cheap-talk announcements where agents report their qualification levels. The

first-best may not be attainable in equilibrium, in which case it is unclear what is

the best payoff the principal can achieve. Addressing these questions would require

different techniques than the ones employed in this paper.
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Appendix

A1 Characterization of first-best with two agents

Proof of Proposition 1. Suppose a first-best PPE exists, and denote the set of

first-best equilibrium payoffs by EFB ⊂ R3. The sum of the two agents’ (average)

continuation payoffs must equal 1 at any history. Furthermore, in each stage game

it must be that one of the agents, say agent i, is discerning (D) and proposes if and

only if he is qualified; the other, last-resort, agent (LR), −i, proposes regardless of his

qualification, and the principal selects i if he proposes and −i otherwise. Following

APS, each pair of first-best equilibrium payoffs for the players can be supported by

such a stage-game action profile and a rule specifying promised (average) continuation

payoff vectors, one for each outcome of the stage-game, each of which belongs to EFB.

For convenience, we assume after each period, firms can observe the realization of a

public randomization device, based on which they select continuation equilibria. This

guarantees convexity of the equilibrium payoff set, but is not needed for our results.

Denote by [σ, σ] the set of average payoffs attainable in a first-best equilibrium

for each of the agents.12 Note that σ = 1 − σ. Let p = αθ + β(1 − θ) be an agent’s

ex-ante probability of carrying out a project successfully, and let σi(jS) (respectively,

σi(jF )) denote i’s continuation payoff when j is picked and succeeds (respectively,

fails). We proceed in several steps to derive necessary conditions on the parameters

for existence of a first-best equilibrium.

Step 1. Solving for σ. Given the observations above, σ must be the minimal

payoff of agent 1 that can be supported when promised continuation payoffs are

restricted to EFB. Suppose σ is obtained when agent 1 is LR (we confirm this later).

We assume σ actually solves the following weaker minimization problem, where some

incentive constraints of the agents are ignored. Specifically, we assume σ minimizes

(1− θ) (1− δ + pδσ1(1S) + (1− p)δσ1(1F )) + θδ (ασ1(2S) + (1− α)σ1(2F )) (12)

subject to the IC constraint that agent 2 does not propose when unqualified,

δ (p1σ2(1S) + (1− p1)σ2(1F )) ≥ 1− δ + βδσ2(2S) + (1− β)δσ2(2F ),

12Compactness of the PPE payoff set follows from standard arguments.
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as well as the feasibility constraints, i.e., the constraints on the continuation values,

σi ∈ [σ, σ], i = 1, 2. Adding the remaining IC constraints could make the minimum

greater, for more stringent necessary conditions. However, this will be redundant

since the necessary condition found will be sufficient.13 Using the fact that agents’

continuations sum to 1 for any realization, we can rewrite agent 2’s IC constraint:

δ (βσ1(2S) + (1− β)σ1(2F )) ≥ 1− δ + δ (p1σ1(1S) + (1− p1)σ1(1F )) .

Clearly, (12) is minimized only if σ1(1S) = σ1(1F ) = σ (lowering these continua-

tions reduces the objective and can only relax the constraint). Therefore, σ minimizes

(1− θ) (1− δ + δσ) + θδ (ασ1(2S) + (1− α)σ1(2F )) (13)

subject to the binding IC constraint

δ (βσ1(2S) + (1− β)σ1(2F )) = 1− δ + δσ

and the feasibility constraints. Using the IC constraint, we see the coefficient on

σ1(2S) is (α−β)/(1−β) > 0, and hence (13) is increasing in σ1(2S). Since a decrease

in σ1(2S) yields an increase in σ1(2F ), there are two possible cases to consider.

Case 1: σ1(2S) = σ does not violate the feasibility constraints. Then σ1(2F ) =

σ + 1−δ
δ(1−β)

and feasibility requires σ1(2F ) ≤ σ. Setting σ equal to the objective in

the minimization problem, we obtain σ = 1 − θ + θ 1−α
1−β . The feasibility constraint

σ + 1−δ
δ(1−β)

≤ σ = 1− σ is therefore satisfied if and only if

(
1− θ + θ

1− α
1− β

)
+

1− δ
δ(1− β)

≤ 1−
(

1− θ + θ
1− α
1− β

)
which can be rearranged to obtain

δ ≥ 1

β + 2θ(α− β)
. (14)

This condition is therefore necessary for Case 1.

Case 2: σ1(2F ) = σ. If σ1(2S) cannot be brought down further, then σ1(2F )

13Alternatively, once obtained, it can be verified that the solution to the relaxed minimization
problem also solves the original one.
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must be at its maximal feasible continuation, σ. From the IC,

σ1(2S) =
1− δ
δβ

+
σ

β
− (1− β)σ

β
.

Setting σ equal to the objective in the minimization problem, and solving for it,

σ = 1 +
θ
(
α−β
β

)
1− δ − 2δθ

(
α−β
β

) . (15)

In order for Case 2 to be possible, it must be that σ1(2S) ∈ [σ, σ]. Rearranging,

and using σ = 1− σ and (15), this is equivalent to

1

δ
≤

2θ
(
α−β
β

)
+ 1

2δθ
(
α−β
β

)
− 1 + δ

≤ 1

δ(1− β)
. (16)

It is easy to verify that the right inequality of (16) is equivalent to (14).

Therefore, (14) is necessary for both Cases 1 and 2. To show it is necessary for

the existence of a first-best equilibrium, it remains to verify our conjecture that agent

1’s minimal first-best equilibrium payoff is indeed obtained when he is LR.

Step 2. σ is attained when agent 1 is LR. If σ were attained when agent 1 is

discerning, his payoff would be

θ (1− δ + αδσ1(1S) + (1− α)δσ1(1F )) + (1− θ)δ (p2σ1(2S) + (1− p2)σ1(2F )) .

The IC constraint for agent 1 not proposing when he is unqualified is

δ (p2σ1(2S) + (1− p2)σ1(2F )) ≥ 1− δ + δ (βσ1(1S) + (1− β)σ1(1F )) .

Therefore,

σ ≥ θ (1− δ + δ (ασ1(1S) + (1− α)σ1(1F ))) + (1− θ)δ (p2σ1(2S) + (1− p2)σ1(2F ))

≥ 1− δ + θ (αδσ1(1S) + (1− α)δσ1(1F )) + (1− θ) (δ(βσ1(1S) + (1− β)σ1(1F )))

≥ 1− δ + δσ,

which implies σ ≥ 1, a contradiction.
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From Steps 1 and 2 we conclude that we have in (14) a necessary condition for the

existence of a first-best PPE. In fact, since (14) is also sufficient for Case 1 to hold,

this immediately implies (14) is also sufficient for the existence of a first-best PPE.14

We next show directly that the MLR forms a (first-best) PPE whenever (14) holds.

Step 3: Sufficient conditions for MLR. Recall from Section 3 that V D
1 and

V LR
1 represent agent 1’s average discounted payoff (prior to learning his qualification

status) under the MLR strategy profile when he is discerning and when he is last-

resort, respectively. In Section 3 we showed that the IC constraint for an unqualified

discerning agent not to propose is given by,

V D
1 − V LR

1 ≥ 1− δ
δ(1− β)

, (17)

where V D
1 and V LR

1 are defined as follows

V D
1 = θ

(
1− δ + αδV D

1 + (1− α)δV LR
1

)
+ (1− θ)δV D

1 ,

V LR
1 = (1− θ)

(
1− δ + δV LR

1

)
+ θ

(
αδV LR

1 + (1− α)δV D
1

)
.

Rearranging, we have

V D
1 =

θ(1− δ) + θ(1− α)δV LR
1

1− δ + δθ(1− α)
, (18)

V LR
1 =

(1− θ)(1− δ) + θ(1− α)δV D
1

1− δ + δθ(1− α)
.

Solving explicitly for V LR
1 , we find it equals:

(1− θ)(1− δ) + θ(1− θ)(1− α)δ + θ2δ(1− α)

1− δ + 2θδ(1− α)
,

and from (18) it follows that

V D
1 − V LR

1 =
θ(1− δ)− (1− δ)V LR

1

1− δ + θ(1− α)δ
.

14More precisely, following APS, (14) guarantees that a non-empty, bounded, self-generating set
of first-best payoffs (payoff vectors in which the principal obtains her first best) exists.
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Plugging in the expression for V LR
1 yields:

V D
1 − V LR

1 =
(1− δ)(2θ − 1)

1− δ + 2θδ(1− α)
,

which combined with the IC constraint (17) yields the condition (14). �

A2 Hierarchies in the many-agents case

Proof of Proposition 4. Let V k denote the normalized discounted expected utility

of an agent in position k of the ranking. Consider the incentive constraint of not

proposing for an unqualified agent whose rank is between 1 and n− 1:

X + pδV k ≥ X + p[1− δ + βδV k + (1− β)δV j(k)],

where j(k) is the rank (≥ k) where the agent of rank k is sent after low profit, p

is the probability all agents ranked above are unqualified, and X is the expected

continuation value for an agent at rank k when the principal selects a higher-priority

(lower ranked) agent.15 The inequality is written more concisely as

V k − V j(k) ≥ 1− δ
δ(1− β)

.

In particular, we see that j(k) must be strictly larger than k as the RHS is strictly

positive. In particular,

V k ≥ V n + φ(k)
1− δ

δ(1− β)
,

for all k, where φ(k) is the number of times j(·) must be iterated to reach n. We

have:

1 ≥
n∑
k=1

V k ≥ nV n +
n−1∑
k=1

φ(k)
1− δ

δ(1− β)
. (19)

We can also determine a lower bound for V n. Notice that

V n = (1− θ)n−1(1− δ) + δV n +
n−1∑
k=1

p(k)(1− α)δ(V j′(k) − V n),

15It is notationally heavy to develop X in terms of the V ’s as k may reshuffle position even if
others follow equilibrium strategies since α < 1, but it does not matter since the term appears on
both sides.
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where j′(k) is the rank where n is sent if the agent at rank k gets low profit, and

p(k) = (1− θ)k−1θ is the probability the agent of rank k is chosen. Thus

V n ≥ (1− θ)n−1 +
P (1− α)

(1− β)
,

where P is the probability an agent of rank k with j′(k) 6= n is picked (the sum of

those p(k)’s).

Given (19), for the hierarchical strategy profile to be an equilibrium requires:

1 ≥ n
(

(1− θ)n−1 +
P (1− α)

(1− β)

)
+

n−1∑
k=1

φ(k)
(1− δ)
δ(1− β)

. (20)

On the other hand, MLR forms an equilibrium if and only if 16

1 ≥ n
(

(1− θ)n−1 +
(1− (1− θ)n−1)(1− α)

(1− β)

)
+ (n− 1)

(1− δ)
δ(1− β)

. (21)

Consider the necessary condition (20) for the case of hierarchical strategy profiles

that send failing agents to the bottom. Here, P = 1− (1− θ)n−1 and φ(k) = 1 for all

k, which proves the second half of the result in (b).

Consider next any hierarchical strategy profile. Observe that P ≥ θ(1 − θ)n−2

since j(k) = n for least one agent of rank k ≤ n− 1, with k = n− 1 in the worst-case

scenario. If the strategy profile does not send all failing agents to the bottom (the

case we have already treated), then
∑n−1

k=1 φ(k) ≥ n. Thus in this case, (20) implies

the following necessary condition for the hierarchy to form an equilibrium:

1 ≥ n
(

(1− θ)n−1 +
θ(1− θ)n−2(1− α)

(1− β)
+

(1− δ)
δ(1− β)

)
.

The second term is smaller than the corresponding term for MLR because θ(1 −
θ)n−2 < 1 − (1 − θ)n−1 over the relevant range of θ’s; but the last term is larger as

there is at least an extra 1−δ
δ(1−β)

. It is easy to find (e.g. taking α near 1) parameter

16One can check directly that the same condition on δ as in Proposition 3 but with π replaced

with 1−n(1−θ)n−1

n−1 . However, there is also an intuition why this must be true: For MLR, P is just

the probability that a discerning agent is picked, or 1 − (1 − θ)n−1, and each of the IC constraints
(only one common IC constraint really because of symmetry of the MLR) must be binding to get
the widest range of parameters, or V D−V LR = 1−δ

δ(1−β) , in which case we can derive the exact values

for V LR and V D, and the equation V LR + (n− 1)V D = 1 gives the largest range of parameters.
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combinations for which the MLR inequality is verified, but the above inequality is

violated. This proves (a).

Finally, we prove the first part of (b) by example. We let n = 3 and consider the

hierarchical strategy profile where the failing agent trades his spot with the one right

after him in the ranking. The recursive equations that give the agents’ payoffs are:

V 1 = θ(1− δ) + p1δV
2 + (1− p1)δV 1

V 2 = (1− θ)θ(1− δ) + p1δV
1 + p2δV

3 + (1− p1 − p2)δV 2

V 3 = (1− θ)2(1− δ) + p2δV
2 + (1− p2)δV 3,

where p1 = θ(1 − α) is the ex-ante probability the top player drops to second, and

p2 = (1− θ)p1 is the ex-ante probability the player in the second spot drops to third.

Now consider the case of β = 0, α = 4/5, δ = 5/6 and θ = 1. The RHS of

inequality (21) is 3/5 + 2/5 = 1. Thus, MLR is a PPE for these parameters, but it

ceases to be one for any lower θ. Let us now look back at the recursive equations for

the hierarchical equilibrium. They become: V 1/3 − V 2/6 = 1/6, V 2/3 − V 1/6 = 0

and V 3 = 0, or V 1 = 2/3, V 2 = 1/3 and V 3 = 0. The IC constraints (as derived

earlier in the proof, using j(k) = k + 1) are V 1 − V 2 ≥ 1−δ
δ(1−β)

and V 2 − V 3 ≥ 1−δ
δ(1−β)

,

both of which hold strictly since 1−δ
δ(1−β)

= 1/5. The determinant of the matrix defining

continuation values is strictly positive at these parameters, so diminishing θ a bit will

only change those values a bit, and the ICs will still hold. �
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